

# Mark Scheme (Results)

Summer 2013

GCE Statistics 1 (6683/01)





Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

#### Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <a href="https://www.pearson.com/uk">www.pearson.com/uk</a>

Summer 2013 Publications Code UA036993 All the material in this publication is copyright © Pearson Education Ltd 2013

### General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

## EDEXCEL GCE MATHEMATICS

## General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol  $\sqrt{}$  will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- \* The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
  - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
  - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

| Question |              | Scheme                                                                                                                                                                                                                                                                                                      | Marks                                                               |
|----------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| 1.       | (a)          | $(S_{th}) = 64980 - \frac{7150 \times 110}{9} = -22408.9 \dots - \underline{22\ 400}$                                                                                                                                                                                                                       | M1 A1                                                               |
|          |              | $(S_{hh}) = 7171500 - \frac{7150^2}{9} = 1491222.2$ <b><u>1490 000</u></b>                                                                                                                                                                                                                                  | A1                                                                  |
|          |              |                                                                                                                                                                                                                                                                                                             | (3)                                                                 |
|          | (b)          | $r = \frac{-22408.9}{\sqrt{1491222 \times 371.56}} = -0.95200068  \text{awrt} - \underline{0.952}$                                                                                                                                                                                                          | M1A1                                                                |
|          | (c)          | Yes as <i>r</i> is close to $-1$ (if $-1 < r < -0.5$ ) or Yes as <i>r</i> is close to 1 (if $1 > r > 0.5$ )<br>[If $-0.5 \le r \le 0.5$ allow "no since <i>r</i> is close to 0"] [If $ r  > 1$ award B0]                                                                                                    | (2)<br>B1ft<br>(1)                                                  |
|          | ( <b>d</b> ) | $b = \frac{-22408.9}{1491222.2} = -0.015027 \qquad (allow \frac{-56}{3725}) \qquad awrt - 0.015$                                                                                                                                                                                                            | M1 A1                                                               |
|          |              | $a = \frac{100}{9}$ - "their b"× $\frac{100}{9}$ = (12.2 - 0.015×794.4), = 24.1604 so $t = 24.2 - 0.015h$                                                                                                                                                                                                   | M1, A1                                                              |
|          |              |                                                                                                                                                                                                                                                                                                             | (4)                                                                 |
|          | (e)          | 0.015 is the <u>drop</u> in temp, (in $^{\circ}$ C), for every 1(m) <u>increase</u> in height above sea level.                                                                                                                                                                                              | $\begin{bmatrix} B1 \\ (1) \end{bmatrix}$                           |
|          | ( <b>f</b> ) | Change = $(`'24.2 - 0.015'' \times 500) - (`'24.2 - 0.015'' \times 1000)$ or $500 \times "0.015''$                                                                                                                                                                                                          | M1                                                                  |
|          |              | $= \pm 7.5 \qquad (awrt \pm 7.5) \qquad (only ft a value < 100)$                                                                                                                                                                                                                                            | $\begin{array}{ c c } A1ft & (2) \\ (13 \text{ marks}) \end{array}$ |
|          |              | Notes                                                                                                                                                                                                                                                                                                       |                                                                     |
|          | (a)          | M1 for at least one correct expression (condone transcription error)                                                                                                                                                                                                                                        |                                                                     |
|          |              | $1^{\text{st}} \text{ A1 for } S_{hh} = \text{ awrt } 1 \text{ 490 000 or } S_{hh} = \text{ awrt } -22 \text{ 400 (Condone } S_{xx} \text{ or } S_{xy} = \dots \text{ or even } S_{yy} = \dots)$                                                                                                            |                                                                     |
|          |              | $2^{nd}$ A1 for $S_{th} = -22400$ and $S_{hh} = 1490000$ only. [This mark is assessing corrected and $S_{hh} = 1490000$ only.                                                                                                                                                                               | rect rounding]                                                      |
|          |              | (Allow no labels but mis-labelling $S_{th}$ as $S_{hh}$ etc loses the final A1)                                                                                                                                                                                                                             |                                                                     |
|          | (b)          | M1 for attempt at correct formula. Allow minor transcription errors of 2 or 3 digi<br>Must have their $S_{hh}$ , $S_{th}$ and given $S_{tt}$ (3sf or better) in the correct places. Condone                                                                                                                 | ts.<br>missing "–"                                                  |
|          |              | Award M1A0 for awrt $-0.95$ with no expression seen. M0 for $\frac{64980}{7171500 \times 7000000000000000000000000000000000$                                                                                                                                                                                | 7.864                                                               |
|          | (c)          | B1ft must comment on supporting <b>and</b> state: <u>high/strong/clear</u> (negative or positive) <u>correlation</u> "points lie close to a straight line" is B0 since there is no evidence of this.                                                                                                        |                                                                     |
|          | ( <b>d</b> ) | 1 <sup>st</sup> M1 for a correct expression for b. Follow through their $S_{hh} \& S_{th}$ . Condone is                                                                                                                                                                                                     | nissing "–"                                                         |
|          |              | $1^{\text{st}}$ A1 for awrt -0.015 or allow exact fraction from rounded values.                                                                                                                                                                                                                             | -                                                                   |
|          |              | $ \begin{array}{ll} 2^{nd} \text{ M1} & \text{for a correct method for } a. \text{ Follow through their value of } b \\ 2^{nd} \text{ A1} & \text{for a correct equation for } t \text{ and } h \text{ with } a = \text{awrt } 24.2 \text{ and } b = \text{awrt } -0.015 \text{ No fractions} \end{array} $ |                                                                     |
|          | (e)          | B1 Must mention $h$ (or height) and $t$ (or temperature) and their (1 sf) <u>value</u> of $b$ in a correct comment                                                                                                                                                                                          |                                                                     |
|          | ( <b>f</b> ) | M1 for a correct expression seen based on their equation. Allow transcription error of 1 digit.<br>If answer is $500 \times$ their <i>b</i> to 2sf and $< 100$ (M1A1), If answer is $500 \times$ their <i>b</i> to 2sf and $\geq 100$ (M1A0)                                                                |                                                                     |

| Question      | Scheme                                                                                                                                                                                 | Marks          |  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|
| <b>2.</b> (a) | 25 (allow any x where $24 \le x \le 26$ )                                                                                                                                              | B1             |  |
|               |                                                                                                                                                                                        | (1)            |  |
| <b>(b)</b>    | $\mathbf{Q}_2$ (or median or $m$ ) = 51                                                                                                                                                | B1             |  |
|               | $IQR = 63 - 46$ , = 17 (or $Q_3 - Q_1 = 17$ )                                                                                                                                          | M1, A1         |  |
|               |                                                                                                                                                                                        | (3)            |  |
| (c)           | Outliers given by $46 - 1.5 \times 17 = 20.5$ or $63 + 1.5 \times 17 = 88.5$                                                                                                           | M1             |  |
|               | Outliers limits are 20.5 and 88.5                                                                                                                                                      | A1             |  |
|               |                                                                                                                                                                                        |                |  |
|               | Allow lower                                                                                                                                                                            |                |  |
|               | whisker to 20.5                                                                                                                                                                        | M1             |  |
|               | Females and upper                                                                                                                                                                      |                |  |
|               | whisker to 88.5                                                                                                                                                                        | 1.1.0          |  |
|               | Do <b>not</b> allow a                                                                                                                                                                  | Alft           |  |
|               | Mala mix of whiskers                                                                                                                                                                   |                |  |
|               | Males * e.g 20.5 and 85                                                                                                                                                                |                |  |
|               | Do <b>not</b> allow                                                                                                                                                                    |                |  |
|               | both sets of                                                                                                                                                                           |                |  |
|               | 10 20 30 40 50 60 70 80 90 100 whiskers                                                                                                                                                | D1             |  |
|               | Mark                                                                                                                                                                                   | BI             |  |
|               |                                                                                                                                                                                        | (5)            |  |
| ( <b>d</b> )  | Medians: Median for females lower than males                                                                                                                                           | 240            |  |
|               | <b>IQR:</b> IQR for females smaller than males. Allow "lower/higher" but not "wider"                                                                                                   | Blft           |  |
|               | <b>Range:</b> Range of females is less than males                                                                                                                                      | Blft           |  |
|               | Skewness: Male and female marks are both positively skew                                                                                                                               | (2)            |  |
|               | Ignore other statements about average, spread, mean, st. Dev, variation, outliers etc                                                                                                  | (11 marks)     |  |
|               | Notes                                                                                                                                                                                  | 100 17         |  |
|               | Mark (b) and (c) together BU1 must see clear statement that median (or <i>m</i> or $Q_2$ ) = 51 and                                                                                    | 1  IQR = 1 /   |  |
| (b)           | M1 for 2 quartiles (at least one correct) and attempt to find the difference. Must see their (                                                                                         | 63 – their 46  |  |
|               | A1 for 17 only. [Answer only of IQR= 17 scores M1A1]                                                                                                                                   |                |  |
| (-)           | A falle come of here also (sith an energies) with an energy of in a most second second 5/5. Oth                                                                                        | · •            |  |
| (C)           | A fully correct box-plot (either version) with no supporting work scores 5/5. Other $1^{st}$ M1 for correct attempt to cale' at least one limit for outline. It their quartiles on IOP | erwise:        |  |
|               | or eward for sight of 20.5 or 88.5                                                                                                                                                     |                |  |
|               | $1^{\text{st}}$ A 1 for identifying both limits of 20.5 and 88.5                                                                                                                       |                |  |
|               | $2^{nd}$ M1 for a box with an upper and a lower whisker(s) with at least 2 correct values (                                                                                            | or correct ft) |  |
|               | (condone no median marked) (condone 2 upper or 2 lower whiskers)                                                                                                                       |                |  |
|               | $2^{nd}$ A1ft for their 20.5 or 26.46, 51, 63 and 85 or their 88.5 in appropriate places and                                                                                           | l readable off |  |
|               | their scale. Follow through their 20.5 and their 88.5 only other values need to be correct                                                                                             |                |  |
|               | If there are 2 upper or 2 lower whiskers A0                                                                                                                                            |                |  |
|               | B1 for only 2 outliers appropriately marked at 14 and 90 Do not award if whiskers go beyond these values                                                                               |                |  |
|               | Apply + 0.5  square accuracy for diagram                                                                                                                                               |                |  |
|               | A box plot <u>not</u> on the graph paper can only score the $1^{st}$ M1A1                                                                                                              |                |  |
|               | In (d) ft from their diagrams (if no diagram then use their values)                                                                                                                    |                |  |
| ( <b>d</b> )  | 1 <sup>st</sup> B1ft for one correct comment comparing median, IQR, range or skewness                                                                                                  |                |  |
|               | 2 <sup>nd</sup> B1ft for a second correct comment comparing median, IQR, range or skewness                                                                                             |                |  |
|               | Do not allow contradictory statements                                                                                                                                                  |                |  |

| Que | stion        | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Marks                                                    |
|-----|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 3.  | (a)          | $\frac{35+75}{2} = 0.55$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1 A1                                                    |
|     |              | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |
|     | ( <b>b</b> ) | 200 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (2)                                                      |
|     | (U)          | $\frac{200-2}{200} = 0.99$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M1 A1                                                    |
|     |              | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (2)                                                      |
|     | (c)          | $P(W = 0) = \frac{30}{20}$ 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (2)                                                      |
|     |              | $\left[ P(W \mid C) \right] = \frac{P(W \cap C)}{P(C)} = \frac{200}{80/2} = \frac{30}{80} = 0.375$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1 A1                                                    |
|     |              | $= P(C) \frac{30}{200} \frac{80}{80}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                          |
|     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (2)                                                      |
|     | (d)          | F Allow diagrams with intersections between $F$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M1                                                       |
|     |              | $\begin{pmatrix} 16 \\ 0 \\ 1 \\ \end{pmatrix}$ $\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B1 for 9, 1                                              |
|     |              | are marked with 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B1 for 77,33                                             |
|     |              | 33 B (0) If their diagram indicates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B1 for 64,16                                             |
|     |              | 77 (0) If their diagram indicates extra empty regions do not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                          |
|     |              | H treat a blank as 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (4)                                                      |
|     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
|     | (e)          | $\frac{1+16+33}{2} = 0.25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $M1 \Delta 1 (2)$                                        |
|     | (0)          | 200 - 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\mathbf{M}\mathbf{I}\mathbf{A}\mathbf{I}  (\mathbf{Z})$ |
|     |              | NT-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (12 marks)                                               |
|     |              | Notes<br>Correct answers only score full marks for each part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                          |
|     |              | If a probability is not in [0, 1] award M0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |
|     | <b>(a)</b>   | ) M1 for denominator of 200 and attempt to add $2 + 8$ or $35 + 75$ or $30 + 50$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                          |
|     |              | A1 for 0.55 or exact equivalent fraction e.g. $\frac{11}{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                          |
|     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |
|     | (b)          | M1 for a fully correct expression (e.g. $1-0.01$ )<br>A1 for 0.00 or an exact equivalent fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                          |
|     |              | A1 for 0.99 of an exact equivalent fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                          |
|     | (c)          | M1 for a correct ratio or a correct formula and at least one correct prob (i.e. a correct num or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                          |
|     |              | denom). BUT award M0 if num is $P(W) \times P(C) = \frac{67}{200} \times \frac{80}{200}$ or if num>denom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                          |
|     |              | A1 for 0.375 or 3/8 or any exact equivalent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                          |
|     | <b>(d)</b>   | M1 for a bay and the 2 matrices $E$ C and $U$ labelled an implied and single set $P$ labelled. T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | hare should                                              |
|     | ( <b>u</b> ) | be no intersections between F, C and H unless marked by zeros. They may have 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nere snouid                                              |
|     |              | circles for F, C and B with $H = F' \cap C'$ etc. Condone lack of zero in the given diagr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | am.                                                      |
|     | F            | 1 <sup>st</sup> B1 for the 9 and 1 or 0.045 and 0.005 (o.e.) in the correct regions May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | have <i>B</i> in 3                                       |
|     | H            | $2^{nd}$ B1 for the 77 and 33 or 0.385 and 0.165 (o.e.) in the correct regions bits the $2^{nd}$ B1 for the 77 and 33 or 0.385 and 0.165 (o.e.) in the correct regions bits the formula of the formula o | hat are                                                  |
|     | С            | $3^{16}$ B1 for the 64 and 16 or 0.32 and 0.08 (o.e.) in the correct regions. disco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nnected.                                                 |
|     | (e)          | M1 for a numerator made up of their $1 + $ their $16 + $ their $33$ and a denom of 200 and num < 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                          |
|     | (-)          | Also allow sum of their probabilities (provided sum < 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                          |
|     |              | A1 for 0.25 or any exact equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |

| Question      | Scheme                                                                                                                                                                                                                                  | Marks                                   |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| <b>4.</b> (a) | $\sum ft = 4837.5$ (allow 4838 or 4840)                                                                                                                                                                                                 | B1                                      |
|               | Mean = $\frac{"4837.5"}{200}$ = 24.1875 awrt <u>24.2</u> or $\frac{387}{16}$                                                                                                                                                            | M1 A1                                   |
|               | $\sigma = \sqrt{\frac{134281.25}{200} - \left(\frac{4837.5}{200}\right)^2}$                                                                                                                                                             | M1                                      |
|               | = 9.293 (accept $s$ =9.32) awrt <u>9.29</u>                                                                                                                                                                                             | A1 (5)                                  |
| (b)           | $Q_2 = [20.5] + \frac{(100/100.5 - 62)}{88} \times 5 = 22.659$ awrt <u>22.7</u>                                                                                                                                                         | (3)<br>M1 A1                            |
| (c)           | $Q_1 = 10.5 + \frac{(50/50.25)}{62} \times 10[=18.56]$ (*) ( <i>n</i> + 1 gives 18.604)                                                                                                                                                 | (2)<br>B1 cso                           |
| ( <b>d</b> )  | Q <sub>3</sub> = 25.5 (Use of $n + 1$ gives 25.734)<br>IQR = 6.9 (Use of $n + 1$ gives 7.1)                                                                                                                                             | (1)<br>B1<br>B1 ft                      |
| (e)           | The data is skewed (condone "negative skew")                                                                                                                                                                                            | (2)<br>B1                               |
| (f)           | Mean decreases and st. dev. remains the same. [Must mention mean and st. dev.] (from(a)) The median and quartiles would decrease. [Must refer to median <u>and</u> at least $Q_1$ .] ((b)(c)) The IQR would remain unchanged (from (d)) | (1)<br>B1<br>B1<br>B1 (3)<br>(14 marks) |
|               | Notes                                                                                                                                                                                                                                   |                                         |
| (a)           | Correct answers only score full marks in each part except (c)B1for 4837.5 or 4838 or 4840 seen.If no $\sum ft$ seen (or attempt at $\sum ft$ seen), B1 can be implied by a correct mean of awrt 24.2                                    |                                         |
|               | 1 <sup>st</sup> M1 for attempt at their $\frac{\sum ft}{\sum f}$ allow 1sf so $\sum f$ = awrt 200 and $\sum ft$ = awrt 5000.                                                                                                            |                                         |
|               | <u>Or</u> award M1 for a clear attempt at mean where at least 4 correct products of $\sum ft$                                                                                                                                           | are seen                                |
|               | 2 <sup>nd</sup> M1 for correct expression including square root seen. Follow through their mean.<br>Allow a transcription error in 134281.25 but not an incorrect re-calculation.                                                       |                                         |
| (b)           | M1 for a correct fraction $\times 5$ . Ignore end point but must be +.<br>Allow use of $(n + 1)$ giving 100.5                                                                                                                           |                                         |
| (c)           | B1cso for a fully correct expression including end point. NB Answer is given.<br>Allow use of $(n + 1)$ giving 50.25but use of 50.5 scores B0                                                                                           |                                         |
| (d)           | 1 <sup>st</sup> B1 for 25.5 (or awrt 25.7 using $n + 1$ )<br>2 <sup>nd</sup> B1ft for their $Q_3$ – their $Q_1$ (or 18.6) (provided > 0) Accept awrt 2sf. Correct ans. only                                                             | y scores 2/2                            |
| (e)           | B1 Must mention that the data is skewed or not symmetrical. Do not award for '                                                                                                                                                          | 'outliers"                              |
| ( <b>f</b> )  | $1^{st}$ B1for one correct comment from the above. May refer to parts (a), (b), (c) or (c) $2^{nd}$ B1for two correct comments from the above $3^{rd}$ B1for all 3 correct comments from the above                                      | 1)                                      |

| Question      | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Marks                      |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| <b>5.</b> (a) | 3a + 2b = 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M1                         |
|               | a + 2a + 3a + 4b + 5b + 1.8 = 4.2 or $6a + 9b = 2.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M1                         |
|               | 5b = 1 Attempt to solve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1                         |
|               | b = 0.2 cao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BI                         |
|               | $a = \underline{0.1}$ cao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BI (5)                     |
| (h)           | $E(X^2) = 1 \times 0.1 + 2^2 \times 0.1 + 2^2 \times 0.1 + 4^2 \times 0.2 + 5^2 \times 0.2 + 6^2 \times 0.2 (-20.4)$ (*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (3)<br>Place               |
| (0)           | $E(X) = 1 \times 0.1 + 2 \times 0.1 + 3 \times 0.1 + 4 \times 0.2 + 3 \times 0.2 + 0 \times 0.3 (= 20.4) $ (')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |
| (c)           | $[Var(X) - 1, 20, 4 - 4, 2^2, [-2, 76]]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1)<br>M1                  |
| (C)           | Var(5 - 3X) = 9 Var(X)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1                         |
|               | $= 24.84$ or $24.8$ (allow $\frac{621}{25}$ ) cao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A1                         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (3)                        |
| ( <b>d</b> )  | [5k = 1 	 so] 	 k = 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B1                         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (1)                        |
| (e)           | P(Y=1) = 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B1                         |
|               | e.g. $P(Y = 2) = F(2) - F(1) = 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M1                         |
|               | $\begin{vmatrix} y \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ Condone use of X(x) instead of Y(y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
|               | P(Y = y) = 0.1 = 0.1 = 0.4 = 0.2 = 0.2 Ignore incorrect or no label if table fully correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Al                         |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (2)                        |
| ( <b>f</b> )  | $P(Y-1) \times P(Y-1) = 0.01$ (20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $(3)$ $M1  \Delta 1  (2)$  |
| (1)           | $\frac{1}{(X-1)} + \frac{1}{(Y-1)} = \frac{1}{(Y-1)} + $ | (15  marks)                |
|               | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |
|               | Probabilities outside [0, 1] should be awarded M0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |
| (a)           | $1^{\text{st}}$ M1 for an attempt at a linear equation in <i>a</i> and <i>b</i> based on sum of probs. = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |
|               | $2^{\text{rd}}$ M1 for an attempt at a second linear equation in <i>a</i> and <i>b</i> based on E(X) = 4.2 Allo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ow one slip.               |
|               | 3 M1 for an attempt to solve their 2 linear equations based on sum of probs and $E(X)$ . M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ust reduce to              |
|               | The $3^{rd}$ M1 may be implied if M2 is scored and both correct answers are given by the score of the score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | en                         |
| ALT           | B1B1 for stating <i>b</i> and <i>a</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |
|               | $1^{\text{st}}$ M1 for showing that sum of probs. = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |
|               | $2^{nd}$ M1 for showing that E(X) = 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|               | $3^{rd}$ M1 for an overall comment "(therefore) $a = \dots$ and $b = \dots$ " No comment loses the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nis mark.                  |
|               | $\mathbf{P}_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 + 26 + 0.2               |
| (0)           | Dr $0.1\pm0.4\pm0.9\pm3.2\pm5\pm10.8$ Allow in a table (with 20.4) but without "±" ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $.2 + 30 \times 0.3$       |
|               | 01 - 0.1 + 0.4 + 0.9 + 5.2 + 5 + 10.0. Thiow in a table (with 20.4) but without $1 - 0.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | phendy seen.               |
| (c)           | $1^{\text{st}}$ M1 for a correct expression for Var(X). Must see $-4.2^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |
|               | $2^{nd}$ M1 for $(-3)^2$ Var(X) or better, no need for a value. Accept $-3^2$ if it clearly is used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | l as +9 later.             |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |
| (e)           | B1 for $P(Y = 1) = 0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
|               | M1 for correct use of $F(y)$ to find one other prob. Can ft their k if finding $P(Y = y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | for $y > 2$                |
|               | Can be implied by one other prob. correct or correct ft Look out for $P(3) = 3k - 0.2$ or P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $(4) = \mathbf{P}(5) = k.$ |
|               | A1 for a fully correct probability distribution. Correct table only is 3/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |
| ( <b>f</b> )  | M1 for a correct expression or answer ft their $D(V = 1)$ and their $D(V = 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |
| (1)           | A1 for 0.01 or exact equivalent only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |
|               | Don't ISW here e.g. $0.1 \times 0.1 + 0.1 \times 0.1$ or $2 \times 0.1 \times 0.1$ are M0A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |

| Ques | stion | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                | Marks             |  |
|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|
| 6.   | (a)   | [Let X be the amount of beans in a tin. $P(X \le 200) = 0.1$ ]                                                                                                                                                                                                                                                                                                                                                        |                   |  |
|      |       | $\frac{200-\mu}{7.8} = -1.2816$ [ calc gives 1.28155156]                                                                                                                                                                                                                                                                                                                                                              | M1 B1             |  |
|      |       | $\mu = 209.996$ awrt 210                                                                                                                                                                                                                                                                                                                                                                                              | A1                |  |
|      | (b)   | $P(X > 225) = P\left(Z > \frac{225 - "210"}{7.8}\right)$                                                                                                                                                                                                                                                                                                                                                              | (3)<br>M1         |  |
|      |       | $= P(Z > 1.92)  \underline{\text{or}}  1 - P(Z < 1.92) \qquad (allow \ 1.93)$<br>= 1 - 0.9726 = 0.0274 (or better) [calc gives 0.0272037]                                                                                                                                                                                                                                                                             | A1                |  |
|      |       | = 0.0274 = awrt <u>2.7%</u> allow <u>0.027</u>                                                                                                                                                                                                                                                                                                                                                                        | A1 (3)            |  |
|      | (c)   | [Let Y be the new amount of beans in a tin]<br>$\frac{210-205}{\sigma} = 2.3263  \text{or}  \frac{200-205}{\sigma} = -2.3263  \text{[calc gives } 2.3263478]}$                                                                                                                                                                                                                                                        | M1 B1             |  |
|      |       | $\sigma = \frac{5}{2.3263}$                                                                                                                                                                                                                                                                                                                                                                                           | dM1               |  |
|      |       | $\sigma = 2.15$ (2.14933)                                                                                                                                                                                                                                                                                                                                                                                             | A1 (1)            |  |
|      |       |                                                                                                                                                                                                                                                                                                                                                                                                                       | (4)<br>(10 marks) |  |
|      |       | Notes                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |  |
|      |       | Condone poor handling of notation if answers are correct but A marks must have corre                                                                                                                                                                                                                                                                                                                                  | ct working.       |  |
|      | (a)   | M1 for an attempt to standardise (allow $\pm$ ) with 200 and 7.8 and set = $\pm$ any z value ( $ z  > 1$ )<br>B1 for $z = \pm 1.2816$ (or better used as a z)[May be implied by 209.996(102)) or better seen]                                                                                                                                                                                                         |                   |  |
|      |       | A1 for awrt 210 (can be scored for using 1.28 but then they get M1B0A1)                                                                                                                                                                                                                                                                                                                                               |                   |  |
|      |       | The 210 must follow from correct working – sign scores A0                                                                                                                                                                                                                                                                                                                                                             |                   |  |
|      |       | If answer is awrt 210 and 209.996 or better seen then award M1B1A1<br>z = 1.28 gives 209.984 and $z = 1.282$ gives 209.9996 and both score M1B0A1                                                                                                                                                                                                                                                                     |                   |  |
|      |       | If answer is awrt 210 or awrt 209.996 then award M1B0A1 (unless of course $z = 1.2816$ is seen)                                                                                                                                                                                                                                                                                                                       |                   |  |
|      | (b)   | M1 for attempting to standardise with 225, their mean and 7.8. Allow $\pm$<br>1 <sup>st</sup> A1 for Z > awrt 1.92/3. Allow a diagram but must have 1.92/3 and correct area indicated.<br>Must have the Z so P(X > 225) with or without a diagram is not sufficient.<br>Award for 1 – 0.9726 or 1 – 0.9732<br>2 <sup>nd</sup> A1 for 2.7 % or better (calculator gives 2.72) Allow awrt 0.027. Correct ans scores 3/3 |                   |  |
|      | (c)   | $1^{\text{st}}$ M1 for an attempt to standardise with 200 or 210, 205 and $\sigma$ and set = + any z values                                                                                                                                                                                                                                                                                                           | ue $( z  > 2)$    |  |
|      |       | B1 for $z = 2.3263$ (or better) and compatible signs.                                                                                                                                                                                                                                                                                                                                                                 |                   |  |
|      |       | If B0 in (a) for using a value in [1.28, 1.29) but not using 1.2816: allow awrt 2.33 here<br>$2^{nd} dM1$ Dependent on the first M1 for correctly rearranging to make $\sigma = -$ May be implied                                                                                                                                                                                                                     |                   |  |
|      |       | e.g. $\frac{5}{\sigma} = 2.32 \rightarrow \sigma = 2.16 \text{ (M1A0)}$ BUT must have $\sigma > 0$                                                                                                                                                                                                                                                                                                                    |                   |  |
|      |       | A1 for awrt 2.15. Must follow from correct working but a range of possible z values will do.<br>NB 2 320 $\leq z \leq 2$ 331 will give an answer of awrt 2 15                                                                                                                                                                                                                                                         |                   |  |

https://xtremepape.rs/

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA036993 Summer 2013

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE





Llywodraeth Cynulliad Cymru Welsh Assembly Government

